Dynamic Stress Changes during Earthquake Rupture

نویسندگان

  • Steven M. Day
  • Guang Yu
  • David J. Wald
چکیده

We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stressdrop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foreshocks during the nucleation of stick-slip instability

[1] We report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2m long and 0.4m deep) in a saw cut sample o...

متن کامل

Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip

[1] Fault processes involve complex patterns of seismic events and aseismic slip. This work develops a three-dimensional (3-D) methodology for simulating long-term history of spontaneous seismic and aseismic slip on a vertical planar strike-slip fault subjected to slow tectonic loading. Our approach reproduces all stages of earthquake cycles, from accelerating slip before dynamic instability, t...

متن کامل

Short Note Dynamic Rupture Simulation of the 2008 Mw 7.9 Wenchuan Earthquake with Heterogeneous Initial Stress

The rupture process and tectonic surroundings of the 2008 Wenchuan, China, earthquake are both complex in a way that might be related to the heterogeneous stress field of the Longmen Shan region. In this study, we construct dynamic models with heterogeneous initial stress to reproduce a kinematic inversion result by Wen et al. (2012) and investigate the physical mechanisms of the variable slip ...

متن کامل

Role of initial stress rotations in rupture dynamics and ground motion:A case studywith implications for theWenchuan earthquake

[1] Motivated by observations in the 2008Mw 7.9 Wenchuan earthquake, we study effects of systematic changes in the principal stress orientation along the fault strike on rupture dynamics and ground motion using a 3‐D finite‐element method. Based on Anderson’s theory of faulting, we set up the initial stress field with rotations in stress orientations along strike for a dynamic rupture model of ...

متن کامل

Properties of Dynamic Earthquake Ruptures With Heterogeneous Stress Drop

Earthquake rupture is a notoriously complex process, at all observable scales. We introduce a simplified semi-dynamic crack model to investigate the connection between the statistical properties of stress and those of macroscopic source parameters such as rupture size, seismic moment, apparent stress drop and radiated energy. Rupture initiation is treated consistently with nucleation on a linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998